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Excitable media are extended spatial systems, which support the propagation of waves including
pulses and rotating spirals. They are well described by sets of partial differential equations involving a
fast activator and a slow inhibitor variable. Here we show that spiral breakup, leading to turbulence,
can occur in a two-dimensional reaction-diffusion system with delayed-inhibitor production. Upon a de-
crease of excitability, spirals become unstable because their wavelengths and periods are too short to be

sustained in the system.

PACS number(s): 82.20.—w

A considerable amount of recent experimental and
theoretical work in the field of spatiotemporal self-
organization in biological, chemical, and physical systems
has been dedicated to excitable media [1]. The interest in
this topic is motivated by the fact that wave propagation
in these media provides an efficient mechanism for com-
munication between distant locations. Seminal examples
are the conduction of electrical impulses along nerve ax-
ons [2] (respectively, cardiac tissue [3]) and the aggrega-
tion of the slime mold Dictyostelium discoideum [4]. In
two dimensions the formation and behavior of spiral
waves have been studied in great detail with the
Belousov-Zhabotinsky reaction [5]. Most experimentally
found phenomena could be reproduced by numerical
simulation of simple two-variable models of partial
differential equations (PDE’s) [6], although the underly-
ing dynamics of the real system usually involves more de-
grees of freedom. Herein we are concerned with the tran-
sition from rotating spiral waves to turbulent wave pat-
terns in terms of such a simple model and its implications
on several experimental findings.

The system investigated is a modified version of a
piecewise linearized FitzHugh-Nagumo model [7],

—‘%=—iu(u—1) u—%l-)— +V2 (1a)
dv _ _
o =)= (1b)

Instead of the linear ansatz f(u )=u from [7], the follow-
ing function was chosen, which leads to inhibitor produc-
tion only above a threshold value of u:

0, u<it
flu)=11—6.75u(u —1)
1, u>1.

<u<l
(1c)

Such a form of f(u) has been found for surface reactions
such as the CO oxidation of Pt(110), where adsorbate-
induced structural changes require a threshold coverage
(8].

Actually, spiral breakup has been observed without de-
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layed inhibitor production in (discrete) cellular automa-
ton models [9] and in coarsely discretized PDE systems
[10]. Neither of these examples gives a hint as to the
mechanism of this instability. Furthermore, use of
discrete models might lead to numerical artifacts, which
vanish in the continuous case. Consequently, sufficiently
fine grids (cf. [6]) were used here (dx =0.39, dt=0.031
for €>0.04) and all effects found were checked with finer
grids.

The decisive parameters in the present context are b
(which determines the excitation threshold) and € [which
is the relationship of the time scales of the fast (activator,
u) and the slow (inhibitor, v) variable]. The excitability of
a system may be defined by the inverse of €. Upon in-
crease of € the ability of an excitable media to propagate
waves usually is lost [6].

The system of equations (1) exhibits a saddle-node bi-
furcation at b =0, which leads to oscillations for negative
b, and is excitable for small positive b and a <1+b. A
typical nullcline picture in this region is reproduced in
Fig. 1. In addition to the rest state, there are two unsta-
ble fixed points. Upon a considerable increase of €, a lim-
it cycle is formed around the unstable node in a saddle
loop bifurcation, which subsequently vanishes via a Hopf
bifurcation, giving rise to bistability. In the excitable re-
gion, pulse propagation in one spatial dimension persists
to unusually high values of € [compared to the standard
model with f(u)=u] as the pulses wind around the un-
stable fixed points and the front is stabilized by the delay
in the inhibitor production (cf. Fig. 1). With increasing €
the refractory zone shrinks until eventually reexcitation
behind the pulse of activation appears, which leads to
emission of a pulse in the opposite site direction
(backfiring). This behavior — quite unusual for excitable
media — evoked some expectations for the two-
dimensional system.

For a broad range of b (b <0.18, @ =0.84) the follow-
ing scenario was found. Starting at €=0.01 rigidly rotat-
ing spirals existed up to €=0.06, at which point they
started to meander, i.e., the spiral tip moved along a
flowerlike curve instead of a simple cycle [6,7,11]. For
€>0.07, spirals began to break up after some transient
rotations, as illustrated in Fig. 2. The resulting free ends

R1635 ©1993 The American Physical Society



RAPID COMMUNICATIONS

R1636

10f

0.8

0.6

04r

. [ TR S SO WO N G B

.02 0 02 04 06 08 10
v

FIG. 1. Nullclines of Eq. (1) with a=0.84, b=0.07. The
dashed lines show profiles of solitary pulses for different € (I:
€=0.04; II: €=0.07; III: €=0.10) indicating a shrinking refrac-
tory tail (u =0, v > 0) for increasing €.

created new spirals, which in turn broke after some time,
eventually giving rise to a noncoherent (turbulent) state
(Fig. 2). The spread of the turbulent pattern was consid-
erably slower than the propagation of the outer spiral
arms.

This spiral instability can be rationalized as follows:
The dispersion relation in excitable media exhibits a
minimum temporal period 7.;,, below which no periodic
wave train solutions exist. When € is increased, this
minimum period allowed by the dispersion relation grows

| =

FIG. 2. Development of turbulence at a=0.84, b=0.07,
€=0.08. Area of one picture is 100X 100 (grid points used:
256X 256). Time difference between pictures is 6.41. The initial
condition was a flat broken wave. The gray level is proportional
to the v concentration.
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faster (with €%) than the rotation period 7, of the spiral
(with €®). The exponent 8 was derived analytically in the
low-€ limit to be 1 [12]. Numerical simulations [6] yield-
ed approximately 4 for a and 1 for 8. Both results were
obtained by use of the FitzHugh-Nagumo model. Within
the present model these values are a=0.6 and 8=0.4
(taken from Fig. 3 at € <0.06). Spirals become unstable if
the two values 7, and 7;, merge, because the periodic se-
quence of spiral arms has to fulfill the dispersion relation,
i.e., 79> T, After the onset of meandering, the result-
ing motion of the spiral core gets faster with growing €
and consequently a large variation of the period due to
the Doppler effect appears in the inner spiral arms (i.e.,
the meandering tip is regarded as a moving source of
periodic waves [13]; Fig. 3). Finally, the smallest period
caused by the Doppler effect fell below the minimum
period of wave trains in the one-dimensional system (as
given by the dispersion relation computed according to
[6]). Thus in the propagation direction of the tip, the
waves are pressed too close together. Over an arc length
of roughly 27 the inner part of the spiral arm was annihi-
lated (which results in two open ends).

The transition to turbulence vanishes at high excitation
threshold b. In accordance with other systems [6] at
higher ¢, first shrinking flat waves were formed, then ex-
citability was lost altogether. The complete phase dia-
gram is reproduced in Fig. 4. Note that there are two
separate regions of meandering spirals. The boundary be-
tween the turbulent regions T1 and T2 is defined by the
onset of backfiring in the one-dimensional system, but is
not associated with an abrupt change of the behavior in
two dimensions, rather with increasing € the trajectories
spend on average more time winding around the unstable
node and do not reach the stable equilibrium anymore.
At the same time the concentration distribution is
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FIG. 3. Spiral rotation period 7, at fixed a =0.84, b=0.07
for different values of €. After the onset of meandering
(€=0.06) the mean period is drawn (full circles), while crosses
show the minimum and maximum periods near the spiral center
(measured at the point where the breakup first occurs for e=¢,).
Open circles give minimum periods 7., of one-dimensional
wave trains.
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FIG. 4. Phase diagram revealing regions of different wave
forms: flat waves (F), spirals with rigid rotation (S), meandering
spirals (M), turbulence 1 (T1, cf. Fig. 2), turbulence 2 (T2,
backfiring), no waves (N). Dotted lines show bifurcations in the
reaction part of Egs. (1). The saddle loop bifurcation (sl) creates
a stable limit cycle around the unstable fixed point. This limit
cycle is then destroyed by a Hopf bifurcation (hopf), which
changes the unstable fixed point into a stable one. Note that
there are two meandering regions in contrast to one in the stan-
dard models [6].

smeared out. The turbulent patterns in the regions T1
and T2 are phenomenologically very similar to the
defect-mediated turbulence in the complex Ginzburg-
Landau equation [14], which describes, however, a medi-
um exhibiting smooth oscillations, in contrast to the
present excitable model, where the homogeneous rest
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state coexists with the turbulence.

We presented calculations with the piecewise linear
system (1). It should be mentioned that the phenomena
persisted also for other forms of nullclines (e.g., an S-
shaped one for u and a sigmoid for v) as long as there
were the additional two unstable fixed points. Equation
(1) actually represents a simplified version of the three-
variable reconstruction model for the isothermal CO oxi-
dation on a Pt(110) single-crystal surface [8] which exhib-
its the same transitions. Experimentally, spiral waves
and turbulent patterns in adjacent parameter regions
have been observed both in the CO oxidation on Pt(110)
[15] and in the NO-NH;, reaction on Pt(110) [16]. The
presented model provides an explanation for these
findings.

The results may also be helpful in the context of cardi-
ac arrhythmia, especially the onset of ventricular fibrilla-
tion [3,17]. This unfortunate event is preceded by tachy-
cardia, which is attributed to the formation of spiral
waves in myocardium [18]. It is still not quite clear how
coherence is then destroyed giving rise to fibrillation [18],
though turbulence has been reported in a complicated
model (Beeler-Reuter) of cardiac activity [19]. On the
other hand, in the heart inhomogeneities may play an im-
portant role for the formation of noncoherent states, as
e.g., in certain results with the Belousov-Zhabotinsky re-
action [20]. In contrast, the present system demonstrates
an alternative mechanism leading to turbulence due to
breakup and subsequent self-replication of spirals in a
continuous excitable medium without assuming any inho-
mogeneities.

The authors are indebted to A. T. Winfree for helpful
discussions and for checking the calculations.
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FIG. 2. Development of turbulence at ¢ =0.84, b=0.07,
€=0.08. Area of one picture is 100X 100 (grid points used:
256X256). Time difference between pictures is 6.41. The initial
condition was a flat broken wave. The gray level is proportional
to the v concentration.



